Arithmetic Properties of Traces of Singular Moduli on Congruence Subgroups Soon-yi Kang and Chang
نویسنده
چکیده
Abstract. After Zagier proved that the traces of singular moduli j(z) are Fourier coefficients of a weakly holomorphic modular form, various properties of the traces of the singular values of modular functions mostly on the full modular group PSL2(Z) have been investigated such as their exact formulas, limiting distribution, duality, and congruences. The purpose of this paper is to generalize these arithmetic properties of traces of singular values of a weakly holomorphic modular function on the full modular group to those on a congruence subgroup Γ0(N).
منابع مشابه
Some Congruences for Traces of Singular Moduli
We address a question posed by Ono [7, Problem 7.30], prove a general result for powers of an arbitrary prime, and provide an explanation for the appearance of higher congruence moduli for certain small primes. One of our results overlaps but does not coincide with a recent result of Jenkins [6]. This result essentially coincides with a recent result of Edixhoven [3], and we hope that the compa...
متن کاملASPECTS OF COMPLEX MULTIPLICATION Contents
1. Preview 2 Complex multiplication on elliptic curves over C 2 Traces of singular moduli 3 Class field theory 3 The Kronecker limit formula and Kronecker’s solution of Pell’s equation 4 Application to Diophantine equations (Villegas) 4 L-series and CM modular forms 5 Other topics 6 2. Complex Multiplication on Elliptic Curves over C 6 Elliptic Curves over C 6 Elliptic functions 7 Complex multi...
متن کاملArithmetic of singular moduli and class polynomials
We investigate divisibility properties of the traces and Hecke traces of singular moduli. In particular we prove that, if p is prime, these traces satisfy many congruences modulo powers of p which are described in terms of the factorization of p in imaginary quadratic fields. We also study generalizations of Lehner’s classical congruences j(z)|Up ≡ 744 (mod p) (where p 11 and j(z) is the usual ...
متن کاملOn Atkin-Lehner correspondences on Siegel spaces
We introduce a higher dimensional Atkin-Lehner theory for Siegel-Parahoric congruence subgroups of $GSp(2g)$. Old Siegel forms are induced by geometric correspondences on Siegel moduli spaces which commute with almost all local Hecke algebras. We also introduce an algorithm to get equations for moduli spaces of Siegel-Parahoric level structures, once we have equations for prime l...
متن کاملSOME INTUITIONISTIC FUZZY CONGRUENCES
First, we introduce the concept of intuitionistic fuzzy group congruenceand we obtain the characterizations of intuitionistic fuzzy group congruenceson an inverse semigroup and a T^{*}-pure semigroup, respectively. Also,we study some properties of intuitionistic fuzzy group congruence. Next, weintroduce the notion of intuitionistic fuzzy semilattice congruence and we givethe characterization of...
متن کامل